# W MEASUREMENTS AND PROSPECTS WITH ATLAS

KEVIN BLACK HARVARD UNIVERSITY





#### OUTLINE

- **Motivations**
- Cross-Sections at 7 TeV and expected event yield
- \*\* Asymmetry Measurements
- \*\* W mass prospects
- # First W results from ATLAS

### PRECISION ELECTROWEAK



$$m_W = \left(\frac{\pi \alpha_{EM}}{\sqrt{2}G_F}\right)^{\frac{1}{2}} \frac{1}{\sin \theta_W \sqrt{1 - \Delta r}}$$

$$f(m_{top}^2, logm_h)$$

$$\Delta m_W \approx 0.7 \times 10^{-2} \Delta m_{top}$$

$$\Delta m_W \approx 10 \mathrm{MeV}$$

# EXPECTED CROSS-SECTIONS



At 7 TeV

 $\sigma^{\text{NNLO}}(W \rightarrow lv) = 10.45 \text{ nb}$ roughly x2 at 14 TeV



# CROSS-SECTION MEASUREMENTS

14 TeV

- \*\* PT > 25 GeV lepton
- \*\* Missing Et > 25 GeV
- Expected uncertainty (stat+sys, no lumi):



$$M_T = \sqrt{p_T^l E_T^{miss} (1 - \cos\Delta\phi(p_T^l, E_T^{miss}))}$$

~factor of 2 less W's at 7 TeV

# PDFS AND CONSTRAINTS

Electroweak physics most sensitive to low x partons at LHC

 $10^{-4}$  to 0.1 for  $|\eta| < 2.5$ 

PDFs probed by W asymmetry at LHC



#### W-ASYMMETRY

- \*\* Strong Asymmetry from production mechanism
- Wery sensitive to PDF
- either use lepton
   asymmetry or
   reconstruct W

$$A_W = \frac{d\sigma(W^+)/dy_{W^+} - d\sigma(W^-)/dy_{W^-}}{d\sigma(W^+)/dy_{W^+} + d\sigma(W^-)/dy_{W^-}}$$

 $W^+$  production depends mainly on the u(x) and d(x) distributions,  $W^-$  mainly on the d(x) and  $\bar{u}(x)$ 



hope to reduce error on low x gluon distribution by~40%

#### W MASS PROSPECTS

Two distributions (different systematics)

**™** M<sub>T</sub> of W

$$\chi^2 = \sum_{i} \frac{(n_i^{obs} - n_i^{exp})^2}{\sigma_i^2}$$





### SYSTEMATICS FOR EARLY MEASUREMENT

| Method                           | p <sub>T</sub> (e) [MeV] | p <sub>T</sub> (μ) [MeV] | m <sub>T</sub> (e) [MeV] | m <sub>T</sub> (μ) [MeV] |
|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| δ M <sub>W</sub> (stat.)         | 120                      | 106                      | 61                       | 57                       |
| $\delta$ M <sub>W</sub> (scale)  | 110                      | 110                      | 110                      | 110                      |
| $\delta$ M <sub>W</sub> (resol)  | 5                        | 5                        | 5                        | 5                        |
| $\delta$ M <sub>W</sub> (tails)  | 28                       | <28                      | 28                       | <28                      |
| δ M <sub>W</sub> (eff.)          | 14                       | -                        | 14                       | -                        |
| $\delta$ M <sub>W</sub> (recoil) | -                        | -                        | 200                      | 200                      |
| δ M <sub>W</sub> (bkg)           | 3                        | 3                        | 3                        | 3                        |
| δ M <sub>W</sub> (PDF)           | 25                       | 25                       | 25                       | 25                       |

SN-ATLAS-2008-070

couple hundred MeV at 15pb<sup>-1</sup> < 10 MeV ultimate goal

#### ATLAS STATUS



7000 Tons
25 m height
46 m length
0.1 billion channels

| Detector         | Channels | % Operational |
|------------------|----------|---------------|
|                  |          |               |
| Pixel            | 80 M     | 97.5%         |
| SCT              | 6.3 M    | 99.3%         |
| TRT              | 350 K    | 98%           |
| Lar EM CAL       | 170 K    | 98.5%         |
| Tile Cal         | 9800     | 97.3%         |
| HEC              | 5600     | 99.9%         |
| Forward LAr      | 3500     | 100%          |
| Calo Trigger     | 7160     | 99.8%         |
| muon RPC Trigger | 370K     | 99.7%         |
| muon TGC Trigger | 320K     | 100%          |
| MDT              | 350 K    | 99.7%         |
| CSC              | 31 K     | 98.5%         |
| RPC              | 370 K    | 97.3%         |
| TGC              | 320 K    | 98.8%         |

#### BEAM CONDITIONS





- \*very stable beam conditions within fill
- some pileup events
  already!

#### MULTI-VERTEX EVENT



# TRACKING COMPARISONS

- Excellent description of ID, material, beam spot
- 7 TeV paper in the works





#### MUON PERFORMANCE

good description of
 inclusive muon
 spectra







# ELECTRON/PHOTON PERFORMANCE

- Excellent description of data
- On the way to in-situ calibration with SM resonances
- <sup>28</sup> 11 μb⁻¹ of data





#### MISSING ET





# Excellent agreement with min bias data

#### \* Evaluated at EM scale



#### OBSERVATION OF W

- **\*\*** Preselection
  - # Electron/Muon
  - **\***MET
- \*\* Background Estimation
- **Candidates and Properties**



### ELECTRON





- Loose EM Cluster with
   E<sub>T</sub> > 20 GeV
- $|\eta| < 2.47$
- $1.37 < |\eta| < 1.52$
- \*\*Background normalized to data (factor of ~2.2)
- Preselection dominated by multijet production

#### MUON PRESELECTION

**Combined** muon

$$P_T > 20 \text{ GeV}$$

- $||Z_{0}-Z_{PV}|| < 1 \text{ cm}$
- \*\*Background MC normalized to data (factor of 1.9)





#### MISSING ENERGY

- Based on topological clusters
- Evaluated at the electromagnetic energy scale
- Important in the muon case is the correction from the muon!





## BACKGROUND ESTIMATION ELECTRONS

Fit in both background and signal dominated region for fraction of dijets/W

 $N_{\rm QCD} = 2.0 \pm 1.2({\rm stat}) \pm 0.4({\rm syst})$ 





### BACKGROUND ESTIMATION MUONS

- \*\* ABCD method
  (assuming
  uncorrelated
  variables)
- Systematic from residual correlation and MC/Data differences



#### Background Estimation

 $1.0 \pm 0.5(\text{stat}) \pm 0.7(\text{syst})$ 

# W->MV EVENT



Muon: 3 Pixel hits, 8 SCT hits, 17 TRT hits, 14 MDT hits,  $Z\sim0.1$  mm from vertex, ID-MS matching within 1 GeV,  $E_T^{miss}$  (calorimeter only)  $\sim 3$  GeV

#### TIGHT SELECTION

#### Muons





#### Electrons





 $Missing E_T > 20 GeV$  Transverse Mass > 40 GeV Tighter electron selection Isolated Muon

Observe
17 Electron Events
40 Muon Events

## W EXPECTATIONS

|                | Electrons                              | Muons                                |
|----------------|----------------------------------------|--------------------------------------|
| Signal         | 20.7±1.7(syst)±4.5(lumi)               | 25.9±3.6(syst)±5.2 (lumi)            |
| Background     | 2.0 ±1.2(stat)±0.4(syst)±0.2<br>(lumi) | 2.8±0.5 (stat)±0.8(syst)±0.6 (lumi)  |
| Total Expected | 22.7±1.2(stat)±1.7(syst)<br>±4.5(lumi) | 28.7±0.5(stat)±3.9 (syst)±5.7 (lumi) |
| Observed       | 17                                     | 40                                   |

### PROPERTIES OF W CANDIDATES





#### NEW PHYSICS?

At 14 TeV, at 7 TeV cross-sections down by ~4

Even at 7 TeV
we begin getting
sensitivity over
Tevatron at low
luminosity

**Stay tuned!** 



#### SUMMARY

- \*\* LHC will offer unprecedented number of W's for a variety of studies:
  - \* Detector Commissioning
  - \*\* Precision Electroweak Physics
  - \*\* Backgrounds for 'new' physics
- # Just getting started but excellent early results